MATHÉMATIQUES - ORAL I

DURÉE

Cet oral I de mathématiques dure 1 heure, préparation incluse.

OBJECTIFS

Le but d'une telle épreuve est d'abord de contrôler l'assimilation des notions au programme de mathématiques de la filière.

C'est aussi d'examiner:

- la capacité d'initiative du candidat,
- sa réactivité dans un dialogue avec l'examinateur et, pour l'exercice « calcul formel », face à un logiciel,
- son aptitude à mettre en œuvre ses connaissances pour résoudre un problème,
- sa faculté à critiquer éventuellement les résultats obtenus et à changer de méthode en cas de besoin.

Pour la composante « calcul formel », le candidat n'est pas jugé sur une connaissance encyclopédique du logiciel mais sur son aptitude à utiliser cet outil de manière intelligente.

ORGANISATION

Les candidats ont deux exercices à résoudre durant cet oral.

Pour l'immense majorité des candidats, ces deux exercices se répartissent de la manière suivante :

- Un exercice « classique » portant sur le programme de mathématiques,
- Un exercice « calcul formel », portant sur le même programme mais exigeant l'usage d'un logiciel de calcul formel (Maple ou Mathematica) dans le cadre du programme d'informatique. Pour cet exercice, les candidats disposent d'un ordinateur, du logiciel adéquat, et d'une liste de fonctions et de mots-clé. Ils ont accès à l'aide en ligne du logiciel. En cas de problèmes techniques, un candidat pourrait se voir proposer deux exercices

« classiques ». Cela n'a pas été le cas lors de la session 2005. Lors de cette session, les candidats avaient à leur disposition les logiciels suivants :

- Maple V version 4,
- Maple V version 5,
- Mathematica version 5.0.

Aucun exercice posé ne requiert l'utilisation d'une calculatrice personnelle. L'usage éventuel d'une telle calculatrice requiert alors l'autorisation de l'examinateur... qui peut la refuser.

Les exercices posés aux candidats sont classiques et ne font appel à aucune astuce particulière.

COMMENTAIRES

L'impression qui prévaut depuis quelques années sur la baisse du niveau moyen des candidats perdure. Les connaissances sont souvent fragiles. Beaucoup trop de candidats ignorent les hypothèses précises des théorèmes utilisés et éprouvent de sérieuses difficultés à mobiliser leur savoir pour aborder avec succès un exercice.

Des « savoir-faire » de base semblent maintenant difficiles pour beaucoup d'entre eux. Citons par exemple :

- démontrer qu'une application est bijective,
- calculer dans ou à l'aide des nombres complexes,
- donner un équivalent ou calculer un développement limité,
- étudier la convergence d'une intégrale impropre,
- calculer une intégrale ou la somme d'une série entière,
- effectuer un changement de variables dans un calcul de dérivées partielles,
- résoudre une équation différentielle linéaire,
- écrire l'équation d'une droite, d'un plan ou d'un cercle,
- ...

Concernant les intégrales dépendant d'un paramètre, les théorèmes sont souvent cités correctement mais de manière mécanique car les candidats donnent l'impression de n'avoir rien compris aux hypothèses requises... C'est d'ailleurs souvent le cas avec des théorèmes aux hypothèses « fines » (citons comme autre exemple le changement de variables dans un calcul de dérivées partielles).

Par contre, les compétences des candidats en « calcul formel » ont semblé, cette année, légèrement meilleures que lors des sessions 2003 et 2004 où les examinateurs avaient remarqués une légère baisse dans l'aisance des candidats face au logiciel.

Les maladresses et les erreurs les plus fréquentes en calcul formel sont toujours les mêmes ; elles résultent d'une méconnaissance plus ou moins grande :

- de la notion de règle de substitution,
- de la distinction entre expression et fonction,
- de la définition des fonctions,
- de la définition et de la manipulation des vecteurs et des matrices,
- de la récupération des solutions d'une équation,
- des différences entre listes, séquences, ensembles,...

ANALYSE DES RÉSULTATS

1153 candidats, répartis en 8 jurys pour les mathématiques, ont passé cet oral.

Les résultats sont :

Moyenne	10,39		
Écart-type	3,78		
Note minimale	1		
Note maximale	20		

La répartition des notes est la suivante :

$0 \le n \le 4$	$4 < n \le 6$	$6 \le n \le 8$	$8 < n \le 10$	$10 \le n \le 12$	$12 \le n \le 14$	$14 \le n \le 16$	$16 < n \le 20$
75	122	168	224	211	183	110	60

Comme les autres années, la moyenne, qui peut sembler correcte, a été obtenue par une adaptation des examinateurs au niveau des candidats de façon à éviter de déséquilibrer l'ensemble des disciplines de l'oral.

Mais il est malheureusement certain que beaucoup de concepts et de techniques mathématiques indispensables pour un futur ingénieur ne sont plus assimilés par certains candidats, et cela même parmi ceux qui seront admis dans une École. Manifestement le programme des classes préparatoires de la filière PTSI/PT, l'horaire d'enseignement, le niveau moyen des étudiants après le baccalauréat et le travail fourni en vue des concours ne sont plus en adéquation.

Pour terminer sur une remarque plus réjouissante, on peut noter que les meilleurs candidats (avec une note ≥ 14 pour situer le niveau, soit environ 250 candidats) ont donné l'impression d'avoir assimilé le programme et d'être à l'aise avec les concepts mathématiques, les techniques de calcul et l'utilisation du logiciel de calcul formel.

CONSEILS AUX FUTURS CANDIDATS

Les conseils que l'on peut donner aux futurs candidats sont des conseils de « bon sens » que leur ont certainement déjà donné leurs enseignants :

- Travailler de manière régulière tout au long de l'année, y compris dans l'utilisation du logiciel de calcul formel : il doit être utilisé pour illustrer les différentes parties du cours et la compétence attendue ne s'acquiert pas en 8 jours, entre l'écrit et l'oral.
- Étudier soigneusement son cours, connaître les hypothèses précises d'application des théorèmes. Un énoncé de théorème n'est pas un texte vague que l'on peut utiliser comme incantation lors d'un exercice.
- À propos de chaque chapitre, faire un petit nombre d'exercices bien choisis et ne pas se contenter d'en lire une solution, aussi parfaite soit-elle. L'apprentissage des mathématiques, comme l'utilisation d'un logiciel de calcul formel, passe obligatoirement par la pratique. Il faut souvent avoir « séché » sur une question pour en comprendre la solution.
- Lors de la résolution d'un exercice, réfléchir pour savoir quelles parties du cours sont concernées, quels théorèmes vont s'appliquer, quelles méthodes sont possibles : ne jamais se lancer sans réflexion dans un calcul.
- Apprendre à présenter ses calculs et ses résultats sur un tableau de manière ordonnée et propre : le tableau ne doit pas être un brouillon lisible seulement par son auteur. De même, il faut s'entraîner à expliquer clairement d'une voix posée et audible le fil conducteur de ses calculs ou de sa démonstration lors d'une prestation orale.
- S'entraîner au calcul : utiliser les nombres complexes, réduire une matrice 3×3, calculer un développement limité ou une intégrale, résoudre une équation différentielle linéaire d'ordre 2 à coefficients constants, donner l'équation d'un plan passant par 3 points... toutes ces activités de base parmi d'autres ne devraient pas poser de problème ; or beaucoup de candidats ont du mal à mener ces calculs à leur terme.
- S'habituer à utiliser l'aide du logiciel de calcul formel à bon escient, par exemple pour chercher la syntaxe d'une option particulière. L'utilisation de l'aide ne doit pas servir à masquer une ignorance des connaissances de base.
- Après avoir obtenu un résultat, avoir un minimum d'esprit critique pour ne pas l'accepter si il semble absurde ou impossible. C'est une qualité importante pour un futur ingénieur.